§ 25.613 provide means for direct visual inspection if it is shown that the inspection is effective and the inspection procedures are specified in the maintenance manual required by §25.1529. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] ## § 25.613 Material strength properties and design values. - (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on a statistical basis. - (b) Design values must be chosen to minimize the probability of structural failures due to material variability. Except as provided in paragraph (e) of this section, compliance with this paragraph must be shown by selecting design values which assure material strength with the following probability: - (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with 95 percent confidence. - (2) For redundant structure, in which the failure of individual elements would result in applied loads being safely distributed to other load carrying members, 90 percent probability with 95 percent confidence. - (c) The effects of temperature on allowable stresses used for design in an essential component or structure must be considered where thermal effects are significant under normal operating conditions. - (d) The strength, detail design, and fabrication of the structure must minimize the probability of disastrous fatigue failure, particularly at points of stress concentration. - (e) Greater design values may be used if a "premium selection" of the material is made in which a specimen of each individual item is tested before use to determine that the actual strength properties of that particular item will equal or exceed those used in design [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–46, 43 FR 50595, Oct. 30, 1978; Amdt. 25–72, 55 FR 29776, July 20, 1990] ## §25.619 Special factors. The factor of safety prescribed in §25.303 must be multiplied by the highest pertinent special factor of safety prescribed in §§25.621 through 25.625 for each part of the structure whose strength is— - (a) Uncertain: - (b) Likely to deteriorate in service before normal replacement; or - (c) Subject to appreciable variability because of uncertainties in manufacturing processes or inspection methods. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–23, 35 FR 5674, Apr. 8, 1970] ## §25.621 Casting factors. - (a) General. The factors, tests, and inspections specified in paragraphs (b) through (d) of this section must be applied in addition to those necessary to establish foundry quality control. The inspections must meet approved specifications. Paragraphs (c) and (d) of this section apply to any structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. - (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d) of this section— - (1) Need not exceed 1.25 with respect to bearing stresses regardless of the method of inspection used; and - (2) Need not be used with respect to the bearing surfaces of a part whose bearing factor is larger than the applicable casting factor. - (c) Critical castings. For each casting whose failure would preclude continued safe flight and landing of the airplane or result in serious injury to occupants, the following apply: - (1) Each critical casting must— - (i) Have a casting factor of not less than 1.25; and - (ii) Receive 100 percent inspection by visual, radiographic, and magnetic particle or penetrant inspection methods or approved equivalent nondestructive inspection methods. - (2) For each critical casting with a casting factor less than 1.50, three sample castings must be static tested and shown to meet—